Gabor Szabo

Gabor Szabo

Gabor Szabo, Ph.D.
Professor

szabo.jpg

 



Research Interests

Molecular interactions in G protein coupled signal transduction.

Integration of extracellular signals is an essential function of the plasma membrane. For heptahelical receptors this function is accomplished by heterotrimeric G proteins that couple receptor activation to specific effectors. A major objective of the laboratory is to understand the physicochemical basis of molecular interactions taking place during this signal transduction cascade. Total internal reflection fluorescence microscopy (TIRFM) of supported membranes is used to investigate interactions of fluorophore-labeled G protein alpha and beta-gamma subunits with lipid membranes, either pure or incorporating molecules with which G proteins interact. Fluorescence intensity, fluctuation and energy transfer measurements are used to investigate molecular interactions in the membrane and to relate these to the structure of the protein and lipid components of the system. Of particular interest are the functional roles of N-terminal myristoylation and thioacylation of G protein alpha-i/o subunits as well as lipids mimicking subdomains (rafts) of the plasma membrane. Proteins that associate with G proteins, including RGS, caveolin and a channel effector, are studied with respect to their effects on subunit lateral movement and interactions. In a complementary approach, excised patches of cell membranes expressing G protein-regulated muscarinic potassium channels (K-ACh) are used to assay the functionality of fluorescently labeled and/or chemically modified G protein subunits and to understand channel regulation in vivo on the basis of the TIRFM results. These studies are expected to establish a link between structural features of molecules participating in G protein coupled signaling and their functional dynamics.

Function of membrane proteins in pure lipid membranes.

Synthetic lipid membranes made from pure lipids are used to understand the relationships between the structure and function of ion channels in membranes of well-defined composition. Channel forming molecules, including bacterial toxins and model peptides are incorporated in these membranes and studied under voltage clamp in order to understand their cellular function as it relates to their molecular structure.

Role of ion channels in the genesis and maintenance of atrial fibrillation.

The laboratory is also interested to identify molecular events leading to a predisposition of the heart to atrial fibrillation (AF). Current focus is on atrial membrane currents that may be responsible for an increased vulnerability to fibrillation as well as the associated molecular and cellular factors that contribute to the maintenance and propagation of sustained AF. One of the goals of these studies is to design compounds that specifically target signaling pathways involved in the development of increased vulnerability to AF and test their efficacy.

 

 


Selected Publications:

McLain, M. S., Czajkowsky. D. M.; Torres, V. J., Szabo, G; Shao, Z, and Cover, T. L.  Random mutagenesis of /Helicobacter pylory/  vacA: identification of amino acids essential for cellular vacualation.  Infection and Immunity 74:6188-6196, 2006. [View Entrez Listing]


Hong, H., Szabo, G. and Tamm, L. K.  Electrostatic side-chain couplings in the gating of the OmpA ion channel suggests a mechanism for pore opening.  Nature Chemical Biology 2:627-35, 2006. [View Entrez Listing]

Liu, L., Liao, H., Castle, A., Zhang, J., Casanova, J., Szabo, G., and Castle, D.  SCAMP2 interacts with Arf6 and phospholipase D1 and links their function to exocytotic fusion pore formation in PC12 cells. Mol. Biol. Cell 16:4463-4472, 2005. [View Entrez Listing]


Czajkowsky, D.M.; Iwamoto, H.; Szabo, G.; Cover, T. L.; Shao, Z.  Mimicry of a host anion channel by a /Helicobacter pylory/ pore-forming toxin.  Biophysical Journal 89:3093-3101, 2005.   [View Entrez Listing]

Mitchell KA, Gallagher BC, Szabo G, Otero Ade S.  NDP kinase moves into developing primary cilia.
Cell Motil Cytoskeleton. 2004 Sep;59(1):62-73.   [View Entrez Listing]

Gallagher BC, Parrott KA, Szabo G, Otero A   Receptor activation regulates cortical, but not vesicular localization of NDP kinase. (2003) J Cell Sci. Aug 1;116(Pt 15):3239-50. [View Entrez Listing] 

Abi-Gerges, N., Szabo, G. Otero, A.S., Fischmeister, R. and Mery, P.F. (2002) NO-donnors potentiate the beta-adrenergic stimulation of L-type calcium current and the muscarinic activation of the inward rectifying potassium current in rat cardiac myocytes. Journal of Physiology 540:411-424. [View Entrez Listing]

Mannelquist, A., Iwamoto, H., Szabo, G. and Shao, Z. (2002) Near field optical microscopy in aqueous solution: implementation and characterization of a vibrating probe. Journal of Microscopy 205:53-60. [View Entrez Listing]

PastrŽ, D., Iwamoto, H., Liu, J., Szabo, G. and Shau, Z. (2001) Characterization of AC mode scanning ion-conductance microscopy. Ultramicroscopy 90:13-19. [View Entrez Listing]

McClain,M.S., Cao,P., Iwamoto,H., Szabo,G.,and Shao, Z.F.   (2001) A 12-amino-acid segment, present in type s2 but not type s1 Helicobacter pylori VacA proteins, abolishes cytotoxin activity and alters membrane channel formation. J Bacteriol. Nov;183(22):6499-508. [View Entrez Listing]

Gray,M.C., Lee,S.J., Gray,L.S., Zaretzky,F.R., Otero,A.S., Szabo,G., and Hewlett,E.L. (2001). Translocation-specific conformation of adenylate cyclase toxin from Bordetella pertussis inhibits toxin-mediated hemolysis. J. Bacteriol. 183, 5904-5910. [View Entrez Listing]

Mannelquist,A., Iwamoto,H., Szabo,G., and Shao,Z.F. (2001). Near-field optical microscopy with a vibrating probe in aqueous solution. Applied Physics Letters 78, 2076-2078. [View Entrez Listing]

Arora,A., Rinehart,D., Szabo,G., and Tamm,L.K. (2000). Refolded outer membrane protein A of Escherichia coli forms ion channels with two conductance states in planar lipid bilayers. Journal of Biological Chemistry 275, 1594-1600. [View Entrez Listing]

Vinion-Dubiel,A.D., McClain,M.S., Czajkowsky,D.M., Iwamoto,H., Ye,D., Cao,P., Schraw,W., Szabo,G., Blanke,S.R., Shao,Z.F., and Cover,T.L. (1999). A dominant negative mutant of Helicobacter pylori vacuolating toxin (VacA) inhibits VacA-induced cell vacuolation. Journal of Biological Chemistry 274, 37736-37742. [View Entrez Listing]

Gao,Z.H., Ni,Y.J., Szabo,G., and Linden,J. (1999). Palmitoylation of the recombinant human A(1) adenosine receptor: enhanced proteolysis of palmitoylation-deficient mutant receptors. Biochemical Journal 342, 387-395. [View Entrez Listing]

Andersen,O.S., Apell,H.J., Bamberg,E., Busath,D.D., Koeppe,R.E., Sigworth,F.J., Szabo,G. , Urry,D.W., and Woolley,A. (1999). Gramicidin channel controversy - the structure in a lipid environment. Nature Structural Biology 6, 609. . [View Entrez Listing]

Iwamoto,H., Czajkowsky,D.M., Cover,T.L., Szabo,G., and Shao,Z.F. (1999). VacA from Helicobacter pylori: a hexameric chloride channel. FEBS Letters 450, 101-104. [View Entrez Listing]

Otero, A. S., Xu, L., Ni, Y. and Szabo, G. (1998) Receptor independent activation of atrial muscarinic potassium channels in the absence of nucleotides: Functional properties of an empty form of GK. J. Biol. Chem. 273:28868-28872. . [View Entrez Listing]

Gray, M., Szabo, G., Otero, A. S., Gray, L. and Hewlett, E. (1998) Distinct mechanisms for K+ efflux, intoxication, and hemolysis by Bordetella pertussis AC toxin. J. Biol. Chem. 273:18260-18267. . [View Entrez Listing]

Kowdley, G.C., Ackerman, S.L., Chen, Z., Szabo, G., Jones, L.R., and Moorman, J.R. (1997) Anion, cation, and zwitterion selectivity of phospholemman channel molecules. Biophys J. Jan;72(1):141-5. [View Entrez Listing]

Magyar, J. and Szabo, G. (1996) Effects of volatile anesthetics on the G protein-regulated muscarinic potassium channel. Molecular Pharmacology. 50:1520-1528. [View Entrez Listing]

Densmore, J.J., Haverstick, D.M., Szabo, G. and Gray, L.S. A voltage-operable current is involved in Ca2+ entry in human lymphocytes wheras ICRAC has no apparent role. (1996) Am. J. Physiol. 271:C1494-C1503. [View Entrez Listing]

Moorman, J.R., Ackerman, S.J., Kowdley, G.C., Griffin, M.P., Mounsey, J.P., Chen, Z., Cala, S.E., OÕBrian, J.J., Szabo, G. and Jones, L. (1995) Unitary anion currents through phospholemman channel molecules. Nature 377:737-740. [View Entrez Listing]

Qin, Z., Szabo, G. and Cafiso, D. S. (1995) Anesthetics reduce the magnitude of the membrane dipole potential. Measurements in lipid vesicles using voltage-sensitive spin probes. Biochemistry 34:5536-5542. [View Entrez Listing]

Fischmeister, R., Hanf, R., Li, Y. and Szabo, G. (1995) Differential regulation of cardiac Ca2+ and K+ currents by muscarinic receptors. Heart Vessels 9:41s-43s..

Philipson, L. H., Kuznetsov, A., Toth, P.T., Murphy, J., Szabo, G. Ma, G. H. and Miller, R. J. (1995) Properties of a G-protein coupled and epitope-tagged K+ channel (GIRK1) expressed in stably transfected mammalian cells. J. Biol. Chem. 270:14604-14610. [View Entrez Listing]

Otero, A. S., Yi, X. B., Gray, M. C., Szabo, G. and Hewlett, E. L. (1995) Membrane depolarization prevents cell invasion by B. pertussis adenylate cyclase toxin. J. Biol. Chem. 270:9695-9697. [View Entrez Listing]

Fischmeister, R., Hanf, R., Li, Y. And Szabo, G. Differential regulation of cardiac Ca2+ and K+ currents by muscarinic receptors. In: Heart and Vessels, Sup. 9. Proceedings of the Tokyo WomenÕs Medical College International Symposium. Springer-Verlag, Berlin, 1995..

Li, Y., Hanf, R., Fischmeister, R., Szabo, G. (1994) Differential effects of pertussis toxin on the muscarinic regulation of Ca2+ and K+ currents in frog cardiac myocytes. J. Gen. Physiol. 104:941-959. [View Entrez Listing]

Szabo, G., Gray, M. C., Hewlett, E. L. (1994) Adenylate cyclase toxin from Bordetella pertussis produces ion conductance across artificial lipid bilayers in a calcium and polarity-dependent manner. J. Biol. Chem. 269:22496-22499. [View Entrez Listing]

Hewlett, E.L., Gray, M.C., Otero, A.S., Ehrmann, I.E., Maloney, N.J. Szabo, G. and Barry, E.M. (1993) Characterization of adenylate cyclase toxin from a mutant of Bordetella pertussis defective in the activator gene, cycC. J Biol. Chem. 268:7842-7848. [View Entrez Listing]

Hanf, R.; Li, Y.; Szabo, G.; Fischmeister, R. (1993) Agonist-independent effects of muscarinic antagonists on Ca2+ and K+ currents in frog and rat cardiac cells. J. Physiol 461:743-765. [View Entrez Listing]

Szabo, G., Li, Y., Otero, A.S. Fast kinetics of G protein function in vivo. In: GTPases in biology. Handbook of Experimental Pharmacology. Dickey, B., and Birnbaumer, L. Eds.,Springer-Verlag, Berlin, 1993.

Densmore, J.J.; Szabo, G.; Gray, L.S. (1992) A voltage-gated calcium channel is linked to the antigen receptor in Jurkat T lymphocytes. FEBS letters 312:161-164. [View Entrez Listing]

Hartzell, H.C.; Mery, P.F.; Fischmeister, R.; Szabo, G. (1991)    Sympathetic regulation of cardiac calcium current is due exclusively to cAMP-dependent phosphorylation Nature. Jun 13;351(6327):573-6

Hartzell, H.C.; Mery, P.F.; Fischmeister, R.; Szabo, G. (1991) Sympathetic regulation of cardiac calcium current is due exclusively to cAMP-dependent phosphorylation. Nature 351:573-576.  [View Entrez Listing]

Otero, A.S.; Li, Y.; Szabo, G. (1991) Receptor-mediated deactivation of Gk in cardiac myocytes. Pflugers Arch. 417:543-545. [View Entrez Listing]

Schumaker, J.M.; Clark, J.W., Giles, W.R.; Szabo, G. (1991) A model of the muscarinic receptor-induced changes in K+-current and action potentials in the bullfrog atrial cell. Biophys. J. 57:567-576.

Clark, R.B.; Nakajima, T.; Giles, W.; Kanai, K.; Momose, Y.; Szabo, G. (1990) Two distinct types of inwardly rectifying K+ channels in bullfrog atrial myocytes. J. Physiol. 427:229-251. [View Entrez Listing]

Szabo, G. Regulation of potassium channels by second messengers: Overview. In: Regulation of potassium transport across biological membranes. Reuss, L., Russell, J. and Szabo, G. Eds., University of Texas Press, Austin; 1990, pp.363. .

Bhatnagar, A.; Srivastava, S.; Szabo, G. (1990) Oxydative stress alters specific membrane currents in isolated cardiac myocytes. Circulation Research 67:535-549. [View Entrez Listing]

Szabo, G.; Otero, A.S. (1990) G protein mediated regulation of K+ channels in heart. Annu.Rev.Physiol. 53, 293-305. [View Entrez Listing]

Szabo, G.; Otero, A.S. Muscarinic activation of potassium channels in cardiac myocytes: kinetic aspects of G protein function in vivo. Trends Pharmacol. Sci. 10 (Suppl. Subtypes Muscarinic Recept. IV), 46-49; 1989.. [View Entrez Listing]

Otero, A.S.; Breitwieser, G.E.; Szabo, G. (1988) Activation of muscarinic K+ currents by ATPgS in atrial cells. Science 242, 442-445. [View Entrez Listing]

Otero, A.S.; Szabo, G. (1988) Role of the sodium pump and the background K+ channel in passive K+(Rb+) uptake by isolated cardiac sarcolemmal vesicles. J. Membrane Biol. 104, 253-263. [View Entrez Listing]

Busath, D.; Szabo, G. (1988) Permeation characteristics of gramicidin conformers. Biophys. J. 53:697-707.. [View Entrez Listing]

Busath, D.; Szabo, G. (1988) Low conductance gramicidin A channels are head-to-head dimers of beta (6,4) helices. Biophys. J. 53:689-695. . [View Entrez Listing]

Breitwieser, G.B.; Szabo, G. (1988) Mechanism of muscarinic receptor-induced K+ channel activation as revealed by hydrolysis-resistant GTP analogs. J. Gen. Physiol. 91:469-493.. [View Entrez Listing]

Lapointe, J.Y.; Szabo, G. (1987) A novel holder allowing internal perfusion of patch- clamp pipettes. Pflugers Archive 410:212-216.. [View Entrez Listing]

Breitwieser, G.; Szabo, G. (1985) Uncoupling of cardiac muscarinic and beta-adrenergic receptors from ion channels by a guanine nucleotide analog. Nature 317:538-540.. [View Entrez Listing]

SauvŽ, R.; Szabo, G. (1985) Interpretation of 1/f fluctuations in ion conducting membranes. J. Theor. Biol. 113:501-516.. [View Entrez Listing]

Momose, Y.; Giles, W.; Szabo, G. (1984) Acetylcholine induced K+ current in amphibian atrial cells. Biophys. J. 45:20-22.

Busath, D.; Szabo, G. (1984) Atypical gramicidin A channels have increased field strength at one binding side. Biophys. J. 45:85-87.

Bamberg, E.; Fahr, A.; Szabo, G. Photoelectric properties of the light driven proton pump bacteriorhodopsin. In: Electrogenic Transport: Fundamental Principles and Physiological Implications. M. Blaustein and M. Lieberman Eds., Raven Press, New York; 1984. pp. 381-394.. [View Entrez Listing]

Alvarez, O.; Brodwick, M.; Latorre, R.; McLaughlin, A; McLaughlin, S.; Szabo, G. (1983) Large divalent cations and electrostatic potentials adjacent to membranes: experimental results with hexamethonium. Biophysical J. 44:333-342.. [View Entrez Listing]

Szabo, G.; Busath, D. Ion movements through membrane channels. In: Membrane Biophysics: Physical Methods in the Study of Biophysical Systems. M.A. Dinno, A.B. Callahan, T.C. Rozell, Eds., Alan R. Liss, Inc., New York; 1983. pp. 299- 312.. [View Entrez Listing]

Prasad, K.U.; Trapane, T.L.; Busath, D.; Szabo, G.; Urry, D.W. (1983) Synthesis and characterization of (1-13C) PHE9 Graimicidin A: effects of side chain variations. Int. J. Peptide Protein Res. 22:341-347.. [View Entrez Listing]

Eberhart, R.C.; Thomasson, T.H.; Munro, M.S.; Kumar, A.; Szabo, G. (1982) Indwelling chemical sensors based on semiconductor technology. Critical Care Medicine 10:841-847.. [View Entrez Listing]

Szabo, G.; Waldbillig, R. Lipid model membranes. In: Methods of Experimental Physics. Volume 20, 513-543. Academic Press, New York, 1982.

Prasad, K.U.; Trapane, T.L.; Busath, D.; Szabo, G.; Urry, D.W. (1982) Solid phase (Fmoc) synthesis and characterization of (1-13C) PHE11 gramicidin B. J. Protein Chemistry 1:191-202.

Prasad, K.U.; Trapane, T.L.; Busath, D.; Szabo, G.; Urry, D.W. (1982) Synthesis and characterization of 1-13D-D-LEU12,14 gramicidin A. Int. J. Peptide Protein Res. 19:162-171.. [View Entrez Listing]

Busath, D.; Szabo, G. (1981) Gramicidin forms multi-state rectifying channels. Nature 294:371-373.. [View Entrez Listing]

Szabo, G. (1981) Structural aspects of ionophore function. Fed. Proc. 40:2196-2201.. [View Entrez Listing]

Waldbillig, R.; Szabo, G. (1979) Planar bilayer membranes from pure lipids. Biochem. Biophys. Acta 557:295-205. . [View Entrez Listing]

Szabo, G.; Urry, D. (1979) N-acetyl gramicidin: single-channel properties and implications for channel structure. Science 203:55-57. . [View Entrez Listing]

Waldbillig, R.; Szabo, G. (1978) Solvent depleted bilayer membranes from concentrated lipid solutions. Nature 272:839-840.

Szabo, G. (1977) Electrical characteristics of ion transport in lipid bilayer membranes. Ann. N.Y. Acad. Sci. 303:266-280.. [View Entrez Listing]

Szabo, G. Mechanisms by which small molecules alter ionic permeability through lipid bilayer membranes. In: Membrane Toxicity. R.W. Miller, Ed., Plenum Press, New York; 1977. pp. 167-189.. [View Entrez Listing]

Szabo, G. The influence of dipole potentials in the magnitude and the kinetics of ion transport in lipid bilayer membranes. In: Extreme Environment: Mechanisms of Microbial Adaptation. M.R. Heinrich, Eds., Academic Press, New York; 1976. pp. 321-348.

Szabo, G. (1975) Dual mechanisms for the action of cholesterol on membrane permeability. Nature 252:47-49.. [View Entrez Listing]

Diamond, J.; Szabo, G.; Katz, Y. (1974) Theory of nonelectrolyte permeation in a generalized membrane. J. Membr. Biol. 17:148-154.

Laprade, R.; Ciani, S.M.; Eisenman, G.; Szabo, G. The kinetics of carrier- mediated ion permeation in lipid bilayers and its theoretical interpretation. In: Membranes--A Series of Advances, Vol. 3, Ch. 2, G. Eisenman, Eds., Marcel Dekker, New York; 1974. pp. 129-214.. [View Entrez Listing]

Hall, J.E.; Mead, C.A.; Szabo, G. (1973) A barrier model for current flow in lipid bilayer membranes. J. Membr. Biol. 11:75-97.

Ciani, S.; Laprade, R.; Eisenman, G.; Szabo, G. (1973) Theory for carrier-mediated zero-current conductance of bilayers extended to allow for non-equilibrium of interfacial reactions, spatially dependent mobilities and barrier shape. J. Membr. Biol. 11:255-292.

Szabo, G.; Eisenman, G.; Ciani, S.M.; Laprade, R.; Krasne, S. Experimentally observed effects of carriers on the electrical properties of bilayer membranes-- the equilibrium domain. In: Membranes--A Series of Advances, Vol. 2, G. Eisenman, Eds., Marcel Dekker, New York, p. 179-328; 1973.. [View Entrez Listing]

Ciani, S.M.; Eisenman, G.; Laprade, R.; Szabo, G. Theoretical analysis of carrier-mediated electrical properties of bilayer membranes. In: Membranes--A Series of Advances, Vol. 2, G. Eisenman, Eds., Marcell Dekker, New York, p. 61- 177; 1973.. [View Entrez Listing]

Eisenman, G.; Szabo, G.; Ciani, S.; McLaughlin, S.G.A.; Krasne, S. (1973) Ion binding and ion transport produced by lipid-soluble molecules. Progress in Surface and Membrane Science 6:139-241.

Eisenman, G.; Szabo, G.; McLaughlin, S.; Ciani, S. (1972) Molecular basis for the action of macrocyclic carriers on passive ionic translocation across lipid bilayer membranes. Bioenergetics 4:93-148.. [View Entrez Listing]

Eisenman, G.; Szabo, G.; McLaughlin, S.G.A., Ciani, S.M. Carrier-mediated diffusion across thin membranes. In: Biomembranes, Vol 3-Passive permeability of cell membranes. F. Kreuzer and J.F.G. Slegers, Eds., Plenum Publishing Corp.; 1972.

Szabo, G. Lipid bilayer membranes. In: Membrane Molecular Biology, F. Fox and A.D. Keith, Eds., Sinauer Associates Inc., Stanford, Conn., pp. 146-163; 1972.

McLaughlin, S.G.A.; Szabo, G.; Ciani, S.; Eisenman, G. (1972) The effects of a cyclic polyether on the electrical properties of phospholipid bilayer membranes. J. Membr. Biol. 9:3-36.

Szabo, G.; Eisenman, G.; McLaughlin, S.G.A.; Krasne, S. (1972) Ionic probes of membrane structures. In: Membrane Structure and Its Biological Applications. Ann. N.Y. Acad. Sci. 195:273-290.. [View Entrez Listing]

Eisenman, G.; Szabo, G.; McLaughlin, S.G.A.; Ciani, S.M. Molecular basis for the action of macrocyclic antibiotics on membranes. In: Symposium on Molecular Mechanisms of Antibiotic Action of Protein Biosynthesis and Membranes. D. Vasquez et al., Eds., Elsevier, p. 545; 1971.

McLaughlin, S.G.A.; Szabo, G.; Eisenman, G. (1971) Divalent ions and the surface potential of charged phospholipid membranes. J. Gen. Physiol. 58:667-687.. [View Entrez Listing]

Krasne, G.; Eisenman, G.; Szabo, G. (1971) Freezing and melting of lipid bilayers and the mode of action of nonactin, valinomycin and gramicidin. Science 174:412-415.. [View Entrez Listing]

Eisenman, G.; Szabo, G.; McLaughlin, S.G.A.; Ciani, S.M. Molecular basis for the action of macrocyclic antibiotics on membranes. In: Symposium on Molecular Mechanisms of Antibiotic Action of Protein Biosynthesis and Membranes. D. Vasquez et al., Eds., Elsevier, p. 545; 1971.

Szabo, G.; Eisenman, G.; Ciani, S. Ion distribution in bulk phases and the ion transport properties of bilayer membranes produced by neutral macrocyclic antibiotics. Coral Gables Conference on the Physical Principle of Biological Membranes, F. Snell, T. Wolkensen, G. Iverson and T. Lam, Eds., Gordon and Breach Science Publishers, New York; 1970; pp. 79-134.

McLaughlin, S.G.A.; Szabo, G.; Eisenman, G.; Ciani, S.M. (1970) Surface charge and the conductance of phospholipid membranes. Proc. Natl. Acad. Sci. 67:1268-1275.. [View Entrez Listing]

Eisenman, G.; Ciani, S.; Szabo, G. (1969) The effects of the macrotetralide actin antibiotics on the equilibrium extraction of alkali metal salts into organic solvents. J. Membr. Biol. 1:294-345.

Ciani, S.; Szabo, G.; Eisenman, G. (1969) A theory for the effects of neutral carriers such as the macrotetralide actin antibiotics on the electrical properties of bilayer membranes. J. Membr. Biol. 1:1-36.

Szabo, G.; Eisenman, G.; Ciani, S. (1969) The effects of the macrotetralide actin antibiotics on the electrical properties of phospholipid bilayer membranes. J. Membr. Biol. 1:346-382.

Lavallee, M.; Szabo, G. The effects of glass surface conductivity phenomena on the tip potential of glass micropipette electrodes. Chapter 6, In: Intracellular Glass Microelectrodes, M. Lavallee, N. Hebert, O. Schanne, Eds., Wiley- Interscience; 1969.

Eisenman, G.; Ciani, S.; Szabo, G. (1968) Some theoretically expected and experimentally observed properties of lipid bilayer membranes containing neutral molecular carriers of ions. Fed. Proc. 27:1289-1304. [View Entrez Listing]